NOTE

An Example of Precise Interpolation with a Spline Function

The rigorous mathematical formulas derived from potential theory for the force and potential in the field of a nonhomogeneous spheroid [1] are rather cumbersome for frequent use. In this note a description is given of a spline function of degree three that has been fitted to a series of ten points representing a segment of a theoretical rotation curve of the galactic system [2], [3]. The points to be fitted are given in Table 1; y is the circular velocity in the galactic plane in km/sec at a distance of x kiloparsec (1 parsec = 3.26 light years) from the galactic center. Clearly the points cannot easily be represented by some standard interpolation formula such as a polynomial.

TABLE 1 Segment of a Galactic Rotation Curve										
x	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
у	244.0	221.0	208.0	208.0	211.5	216.0	219.0	221.0	221.5	220.0

The first method described in [2] (for unequally spaced arguments, in general) has been programmed for our IBM 7040 computer and the result, correct to four decimals, is

$$y(x) = 244.0 - 24.8065(x - 1) + 1.8065(x - 1)_{+}^{3}$$

- 0.8391(x - 2)_{+}^{3} - 3.6437(x - 3)_{+}^{3}
+ 2.9140(x - 4)_{+}^{3} - 1.0122(x - 5)_{+}^{3}
+ 1.1349(x - 6)_{+}^{3} - 0.5272(x - 7)_{+}^{3}
- 0.0261(x - 8)_{+}^{3} + 0.6315(x - 9)_{+}^{3}
- 0.4386(x - 10)_{+}^{3},

where the "plus" subscript after a bracket, e.g. $(x - c)_+^3$, indicates that the bracket has its algebraic value for $x \ge c$, and is zero for x < c. ("c" is here assumed positive).

A check of the errors produced by y(x) for a series of intermediate x-values was made by comparing the predicted values with exact values from the theoretical rotation curve [3]. The errors were not greater than 1 part in 500. The author will be happy to send copies of the program to interested persons. I am grateful to the reviewer for pointing out some numerical errors in the original manuscript.

REFERENCES

- 2. T. N. E. GREVILLE, Math. Research Center, Univ. of Wisconsin, Tech. Sum. Report No. 450 (1964).
- 3. K. A. INNANEN, Astrophys. J. 143, 153 (1966).

KIMMO A. INNANEN* Department of Mathematics and Astronomy University of Western Ontario London, Canada

304

^{1.} M. SCHMIDT, Bull. Astron. Inst. Neth. 13, 15 (1956).

^{*} Present address: Center for Research in Experimental Space Science, York University, Toronto 12, Ontario, Canada.