NOTE

An Example of Precise Interpolation with a Spline Function

The rigorous mathematical formulas derived from potential theory for the force and potential in the field of a nonhomogeneous spheroid [1] are rather cumbersome for frequent use. In this note a description is given of a spline function of degree three that has been fitted to a series of ten points representing a segment of a theoretical rotation curve of the galactic system [2], [3]. The points to be fitted are given in Table $1 ; y$ is the circular velocity in the galactic plane in $\mathrm{km} / \mathrm{sec}$ at a distance of x kiloparsec (1 parsec $=3.26$ light years) from the galactic center. Clearly the points cannot easily be represented by some standard interpolation formula such as a polynomial.

TABLE 1
Segment of a Galactic Rotation Curve

x	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
y	244.0	221.0	208.0	208.0	211.5	216.0	219.0	221.0	221.5	220.0

The first method described in [2] (for unequally spaced arguments, in general) has been programmed for our IBM 7040 computer and the result, correct to four decimals, is

$$
\begin{aligned}
y(x)=244.0 & -24.8065(x-1)+1.8065(x-1)_{+}{ }^{3} \\
& -0.8391(x-2)_{+}{ }^{3}-3.6437(x-3)_{+}{ }^{3} \\
& +2.9140(x-4)_{+}{ }^{3}-1.0122(x-5)_{+}{ }^{3} \\
& +1.1349(x-6)_{+}{ }^{3}-0.5272(x-7)_{+}{ }^{3} \\
& -0.0261(x-8)_{+}{ }^{3}+0.6315(x-9)_{+}{ }^{3} \\
& -0.4386(x-10)_{+}{ }^{3},
\end{aligned}
$$

where the "plus" subscript after a bracket, e.g. $(x-c)_{+}{ }^{3}$, indicates that the bracket has its algebraic value for $x \geq c$, and is zero for $x<c$. (" c " is here assumed positive).

A check of the errors produced by $y(x)$ for a series of intermediate x-values was made by comparing the predicted values with exact values from the theoretical rotation curve [3]. The errors were not greater than 1 part in 500 . The author will be happy to send copies of the program to interested persons. I am grateful to the reviewer for pointing out some numerical errors in the original manuscript.

References

1. M. Schmidt, Bull. Astron. Inst. Neth. 13, 15 (1956).
2. T. N. E. Greville, Math. Research Center, Univ. of Wisconsin, Tech. Sum. Report No. 450 (1964).
3. K. A. Innanen, Astrophys. J. 143, 153 (1966).

Kimmo A. Innanen*
Department of Mathematics and Astronomy
University of Western Ontario
London, Canada

[^0]
[^0]: * Present address: Center for Research in Experimental Space Science, York University, Toronto 12, Ontario, Canada.

